Eliseev, A. A., Uspenskaya, S. I., Federov, A. A. \& Tolstova, V. A. (1972). J. Struct. Chem. USSR, 13, 66-69.

Flahaut, J., Laruelle, P., Pardo, M. P. \& Guitard, M. (1965). Bull. Soc. Chim. Fr. pp. 1399-1404.
Hall, S. R. \& Stewart, J. M. (1989). Editors. XTAL2.6 User's Manual. Univs. of Western Australia, Australia, and Maryland, USA.
Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.
McCandlish, L. E., Stout, G. H. \& Andrews, L. C. (1975). Acta Cryst. A31, 245-249.
Olthof-Hazekamp, R. (1989). CRYLSQ. XTAL2.6 User's Manual, edited by S. R. Hall \& J. M. Stewart. Univs. of Western Australia, Australia, and Maryland, USA.
Prewitt, C. T. \& Sleight, A. W. (1968). Inorg. Chem. 7, 10901093.

Range, K. J. \& Leeb, R. (1975). Z. Naturforsch. Teil B, 30, 889-895.
Range, K. J. \& Leeb, R. (1976). Z. Naturforsch. Teil B, 31, 685-686.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Sleight, A. W. \& Prewitt, C. T. (1968). Inorg. Chem. 7, 22822288.

Spek, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. SAyre, p. 528. Oxford: Clarendon Press.
Spek, A. L. (1988). J. Appl. Cryst. 21, 578-579.
White, J. G., Yocom, P. N. \& Lerner, S. (1967). Inorg. Chem. 6, 1872-1875.
Zachariasen, W. H. (1967). Acia Cryst. 23, 558-564.

Structure of $\mathrm{Ta}_{3} \mathbf{N}_{5}$ at $\mathbf{1 6} \mathrm{K}$ by Time-of-Flight Neutron Diffraction

By Nathaniel E. Brese and Michael O'Keeffe
Department of Chemistry, Arizona State University, Tempe, AZ 85287-1604, USA
and Paul Rauch and Francis J. DiSalvo
Baker Laboratory, Department of Chemistry, Cornell University, Ithaca, NY 14853, USA

(Received 20 February 1991; accepted 30 April 1991)

Abstract

Polycrystalline tritantalum pentanitride $\left(\mathrm{Ta}_{3} \mathrm{~N}_{5}\right)$ has been prepared from the reaction of TaCl_{5} with ammonia, and its structure has been refined from time-of-flight neutron diffraction data. $M_{r}=612 \cdot 88$, orthorhombic, Cmcm, $a=3.8862$ (1), b $=10 \cdot 2118$ (2), $c=10 \cdot 2624$ (3) $\AA, \quad V=407 \cdot 26$ (3) \AA^{3}, $Z=4, \quad D_{x}=9.99 \mathrm{~g} \mathrm{~cm}^{-3}$, neutron time-of-flight, Rietveld refinement, $w R_{p}, R_{p}$, reduced $\chi^{2}=0.061$, $0.043,4 \cdot 21$ for data collected at $16 \mathrm{~K} . \mathrm{Ta}_{3} \mathrm{~N}_{5}$ crystallizes with the pseudobrookite $\left(\mathrm{Fe}_{2} \mathrm{TiO}_{5}\right)$ structure. Irregular TaN_{6} octahedra share edges and corners.

Introduction. Several authors have mapped out the phase diagram of the Ta-N system (Brauer \& Zapp, 1954; Schönberg, 1954b). $\gamma-\mathrm{Ta}_{2} \mathrm{~N}$ crystallizes with close-packed metal atoms; the N atoms fill the octahedral sites. ε-TaN has the $B 35$ structure type which consists of very densely packed metal atoms; N atoms fill deformed octahedral holes (Brauer \& Zapp, 1953; Christensen \& Lebech, 1978). $\mathrm{Ta}_{4} \mathrm{~N}_{5}$ and $\mathrm{Ta}_{5} \mathrm{~N}_{6}$ can be prepared as thin films and have been analyzed by electron diffraction (Terao, 1971). At elevated temperatures, $\delta^{\prime}-\mathrm{TaN}_{x}$ forms with the rocksalt structure (Gatterer, Dufek, Ettmayer \& Kieffer, 1975). Thin films of $\delta-\mathrm{TaN}_{0.8-0.9}$ are reported with the hexagonal WC structure (Brauer \& MohrRosenbaum, 1971). Some of these interstitial nitrides
are probably contaminated with traces of oxygen and carbon.
The nitrides of most interest to us are the fully nitrided stoichiometric ones. TaON forms with the baddelyite $\left(\mathrm{ZrO}_{2}\right)$ structure in which Ta atoms are irregularly seven coordinated; oxygen and nitrogen are regularly three and four coordinated (Armytage \& Fender, 1974; Brauer, Weidlein \& Strähle, 1966; Weishaupt \& Strähle, 1977). The compounds $M \mathrm{TaN}_{2}(M=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs})$ form with Ta in four coordination in the filled β-cristobalite structure, while $\mathrm{NaTaN} \mathrm{N}_{2}$ forms with Ta in six coordination in the $\alpha-\mathrm{NaFeO}_{2}$ structure (Jacobs \& Pinkowski, 1989).

The binary compound, the vermillion $\mathrm{Ta}_{3} \mathrm{~N}_{5}$, has been known for many years (Moureu \& Hamblet, 1937). It is reported to have the pseudobrookite $\left(\mathrm{Fe}_{2} \mathrm{TiO}_{5}\right)$ structure. Although the unit cell was originally given as metrically tetragonal (Brauer \& Weidlein, 1965), its structure has been refined as orthorhombic (Strähle, 1973) and monoclinic (Terao, 1977). If it were truly isomorphic with hightemperature $\mathrm{Ti}_{3} \mathrm{O}_{5}$ (Åsbrink \& Magnéli, 1959), $\mathrm{Ta}_{3} \mathrm{~N}_{5}$ would be monoclinic. The reported structure also contains an unusually short $\mathrm{Ta} \cdots \mathrm{Ta}$ distance for a compound in which $\mathrm{Ta}-\mathrm{Ta}$ bonding is not expected so that, in view of the uncertainty about the space group, we felt that it warranted further investi-
gation. We report here neutron-diffraction studies which confirm and refine Strähle's orthorhombic structure.

Experimental. TaCl_{5} was heated under flowing ammonia gas; the gas had been purified as the liqud over sodium. The temperature was slowly increased to 1023 K where a rapid conversion to $\mathrm{Ta}_{3} \mathrm{~N}_{5}$ occurred. The air-stable, maroon-colored material was ground under acetone. X-ray diffraction indicated the presence of single-phased $\mathrm{Ta}_{3} \mathrm{~N}_{5}$. The details of the synthesis will be published elsewhere (Rauch \& DiSalvo, 1991).

Pulsed neutron-diffraction data were collected at 16 K on the Neutron Powder Diffractometer (NPD) of the Manuel Lujan, Jr Neutron Scattering Centre at Los Alamos National Laboratory. The powder data were refined with the use of the General Structure Analysis system (GSAS), a Rietveld profile analysis code which minimizes $\sum w\left(I_{o}-I_{c}\right)^{2}$ (Larson \& Von Dreele, 1990). Data from the four highestresolution detector banks ($\pm 148, \pm 90^{\circ}$) were used which provided 6295 reflections in the range $0.42<d$ $<4.0 \AA$ (27920 profile points). The scattering lengths used were 6.91 and $9.30 \times 10^{-15} \mathrm{~m}$ for Ta and N , respectively. The 99 variables refined included scale factors, 12 background coefficients for each bank used in a cosine Fourier series technique, four profile coefficients for each bank ($\beta_{0}, \beta_{1}, \sigma_{1}$, σ_{2}) (Von Dreele, Jorgensen \& Windsor, 1982), two absorption coefficients (one for each \pm bank pair) (Hewat, 1979; Rouse, Cooper \& Chakera, 1970), diffractometer zero constants, lattice parameters and 26 modeling parameters. The refinement converged; the structural results are given in Tables 1 and 2.* An examination of R values against parity class revealed no unusual trends. The strongest peak on a final difference Fourier synthesis was 0.8% the height of an N atom (the strongest scatterer). A representative diffraction profile is displayed in Fig. 1.

Discussion. Our structure determination confirms and refines that proposed by Strähle (1973). Terao suggested a similar structural model but proposed the space group $C 2 / m$ (Terao, 1977) based on analogy with $\mathrm{Ti}_{3} \mathrm{O}_{5}$ at high temperature (\AA sbrink \& Magnéli, 1959). We transformed our orthorhombic model to the monoclinic setting and found that an unstable refinement in $C 2 / m$ was not statistically better than the refinement in Cmcm : the difference profile curve was identical, and the structural param-

[^0]Table 1. Structure of $\mathrm{Ta}_{3} \mathrm{~N}_{5}$ at $16 \mathrm{~K}^{*}$

| | Site | x | y | z | $100 U_{\text {eq }}\left(\AA^{2}\right)$ | $\varphi(\mathrm{V})$ |
| :--- | :---: | :---: | :---: | :--- | :---: | :---: | :---: |
| $\mathrm{Ta}(1)$ | $4(c)$ | 0 | $0.1971(1)$ | $\frac{1}{4}$ | 0.56 | -54.7 |
| | | | $[0.19757(5)$ | | $0.37]$ | -54.0 |
| $\mathrm{Ta}(2)$ | $8(f)$ | 0 | $0.13455(7)$ | $0.55906(7)$ | 0.60 | -54 |
| | | | $[0.13429(4)$ | $0.56010(5)$ | $0.37]$ | 37.3 |
| $\mathrm{~N}(3)$ | $4(c)$ | 0 | $0.76322(7)$ | 1 | 0.85 | 3 |
| | | $[0.763(1)$ | | $0.5]$ | 35.5 | |
| $\mathrm{~N}(4)$ | $8(f)$ | 0 | $0.04701(6)$ | $0.11949(5)$ | 1.00 | |
| | | | $[0.0470(8)$ | $0.119(1)$ | $0.5]$ | |
| $\mathrm{N}(5)$ | $8(f)$ | 0 | $0.30862(6)$ | $0.07378(5)$ | 0.83 | 38.5 |
| | | | $[0.3097(9)$ | $0.073(1)$ | $0.4]$ | |

*Space group Cmcm, this study: $a=3.88617(9), \quad b=$ 10.2118 (2), $\quad c=10.2624$ (3) \AA; room-temperature study in brackets (Strähle, 1973): $a=3.893, \quad b=c=10.264 \AA . \quad U_{\text {cq }}$ is defined as $\frac{1}{3}$ the trace of the anisotropic temperature factor coefficients.

Table 2. Anisotropic temperature factors $\left(\AA^{2}\right)$ for $\mathrm{Ta}_{3} \mathrm{~N}_{5}$ at $16 \mathrm{~K}^{*}$

Fig. 1. Neutron-diffraction profile fit for $\mathrm{Ta}_{3} \mathrm{~N}_{5}$ at $16 \mathrm{~K}(2 \theta=$ $+148^{\circ}$ detector bank). The data points are shown as ' + ' marks, and the solid line is the calculated profile. The difference curve at the bottom is on the same scale. The background has been subtracted.
eters did not move more than $1-2$ standard deviations away from those of the starting model. We therefore conclude that if $\mathrm{Ta}_{3} \mathrm{~N}_{5}$ is actually monoclinic it is too close to orthorhombic to discern.

The structure of $\mathrm{Ta}_{3} \mathrm{~N}_{5}$ is composed of octahedra of \mathbf{N} atoms centered by Ta atoms. Since the N atoms are both three and four coordinated, the octahedra are irregular. The bond lengths are given in Table 3. Both Ta atoms have six $\mathrm{Ta} \cdots \mathrm{Ta}$ contacts shorter than $3.8 \AA$ (the next-nearest neighbor distance). Figs. 2 and 3 display the structure projected on (100).

Shortest Ta-Ta distances derived from oxide and oxynitride materials are typically $3 \cdot 3 \AA$, although compounds in which metal-metal bonding might be expected contain shorter distances (e.g. $\mathrm{Ta}_{4} \mathrm{SiTe}_{4}$ $2.98 \AA$). Shortest Ta-Ta distances for some structures are tabulated in Table 4. The structure for $\mathrm{Ta}_{3} \mathrm{~N}_{5}$ proposed by Strähle, which we confirm, contains a short $\mathrm{Ta}(2)-\mathrm{Ta}(2)$ distance of $3.00 \AA$, although the other Ta-Ta distances are over $3 \cdot 25 \AA$.

Fig. 2. Projection of the $\mathrm{Ta}_{3} \mathrm{~N}_{5}$ structure onto (100). The b axis is horizontal and the c axis is vertical. The dark-shaded octahedra are displaced by $a / 2$ from the lighter ones. Dark circles represent the four-coordinated N atoms, while the lighter circles represent the three-coordinated N atoms. Larger circles represent Ta atoms within the octahedra.

Fig. 3. Projection of the $\mathrm{Ta}_{3} \mathrm{~N}_{5}$ structure on to (100) emphasizing anion coordination. Larger circles again represent Ta atoms. The edge-sharing tetrahedra are centered by N atoms. The shading of the circles indicates displacement by $a / 2$.

Table 3. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{Ta}_{3} \mathrm{~N}_{5}$

$\mathrm{Ta}(1)-2 \mathrm{Ta}(2)$	$3.2353(8)$
$\mathrm{Ta}(1)-4 \mathrm{Ta}(2)$	$3.2513(7)$
$\mathrm{Ta}(1)-2 \mathrm{~N}(3)$	$2.0571(5)$
$\mathrm{Ta}(1)-2 \mathrm{~N}(4)$	$2.035(1)$
$\mathrm{Ta}(1)-2 \mathrm{~N}(5)$	$2.1372(8)$
$\mathrm{Ta}(2)-\mathrm{Ta}(1)$	$3.2353(8)$
$\mathrm{Ta}(2)-2 \mathrm{Ta}(1)$	$3.2513(7)$
$\mathrm{Ta}(2)-\mathrm{Ta}(2)$	$3.004(1)$
$\mathrm{Ta}(2)-2 \mathrm{Ta}(2)$	$3.287(1)$
$\mathrm{Ta}(2)-\mathrm{N}(3)$	$2.2203(8)$
$\mathrm{Ta}(2)-\mathrm{N}(4)$	$1.9550(8)$

$\mathrm{N}(3)-\mathrm{Ta}(1)-\mathrm{N}(3)$
$\mathrm{N}(3)-\mathrm{Ta}(1)-\mathrm{N}(4)$
$\mathrm{N}(3)-\mathrm{Ta}(1)-\mathrm{N}(5)$
$\mathrm{N}(4)-\mathrm{Ta}(1)-\mathrm{N}(4)$
$\mathrm{N}(4)-\mathrm{Ta}(1)-\mathrm{N}(5)$
$\mathrm{N}(4)-\mathrm{Ta}(1)-\mathrm{N}(5)$
$\mathrm{N}(5)-\mathrm{Ta}(1)-\mathrm{N}(5)$
$\mathrm{N}(3)-\mathrm{Ta}(2)-\mathrm{N}(4)$
$\mathrm{N}(3)-\mathrm{Ta}(2)-\mathrm{N}(4)$
$\mathrm{N}(3)-\mathrm{Ta}(2)-\mathrm{N}(5)$
$\mathrm{N}(3)-\mathrm{Ta}(2)-\mathrm{N}(5)$
$\mathrm{N}(4)-\mathrm{Ta}(2)-\mathrm{N}(4)$
$\mathrm{N}(4)-\mathrm{Ta}(2)-\mathrm{N}(5)$
$\mathrm{N}(4)-\mathrm{Ta}(2)-\mathrm{N}(5)$

$141.67(7)$	$\mathrm{N}(4)-\mathrm{Ta}(2)-\mathrm{N}(5)$	$104.31(3)$
$104.31(2)$	$\mathrm{N}(4)-\mathrm{Ta}(2)-\mathrm{N}(5)$	$161.01(4)$
$79.93(3)$	$\mathrm{N}(5)-\mathrm{Ta}(2)-\mathrm{N}(5)$	$79.56(3)$
$82.30(5)$	$\mathrm{N}(5)-\mathrm{Ta}(2)-\mathrm{N}(5)$	$145.70(5)$
$81.05(2)$	$\mathrm{Ta}(1)-\mathrm{N}(3)-\mathrm{Ta}(1)$	$141.67(7)$
$163.35(5)$	$\mathrm{Ta}(1)-\mathrm{N}(3)-\mathrm{Ta}(2)$	$98.88(1)$
$115.60(6)$	$\mathrm{Ta}(2)-\mathrm{N}(3)-\mathrm{Ta}(2)$	$123.91(5)$
$99.55(4)$	$\mathrm{Ta}(1)-\mathrm{N}(4)-\mathrm{Ta}(2)$	$105.14(4)$
$177.96(5)$	$\mathrm{Ta}(1)-\mathrm{N}(4)-\mathrm{Ta}(2)$	$157.34(4)$
$78.48(2)$	$\mathrm{Ta}(2)-\mathrm{N}(4)-\mathrm{Ta}(2)$	$97.51(4)$
$99.44(3)$	$\mathrm{Ta}(1)-\mathrm{N}(5)-\mathrm{Ta}(2)$	$95.28(4)$
$82.49(4)$	$\mathrm{Ta}(1)-\mathrm{N}(5)-\mathrm{Ta}(2)$	$102.41(2)$
$78.52(3)$	$\mathrm{Ta}(2)-\mathrm{N}(5)-\mathrm{Ta}(2)$	$100.44(3)$
$101.06(3)$	$\mathrm{Ta}(2)-\mathrm{N}(5)-\mathrm{Ta}(2)$	$145.70(5)$

Table 4. Shortest $\mathrm{Ta} \cdots \mathrm{Ta}$ distances in assorted materials

Compound	Number	Distance (\AA)	Reference
Ta	8	2.86	Mueller (1977)
$e \mathrm{TaN}$	2	2.91	Christensen \& Lebech (1978)
$\mathrm{Ta}_{4} \mathrm{SiTc}_{4}$	8	2.97	Badding \& DiSalvo (1990)
$\mathrm{Ta}_{2} \mathrm{CoN}$	6	2.98	Schönberg (1954a)
$\mathrm{Ta}, \mathrm{N}_{*}$	6	2.99	Fontbonne \& Gilles (1969)
$\mathrm{Ta}_{3} \mathrm{MnN}_{4}$	6	3.02	Schōnberg (1954a)
$\beta-\mathrm{Ta}_{2} \mathrm{~N}$	6	3.03	Conroy \& Christensen (1977)
$\mathrm{Ta}_{4} \mathrm{~N}_{5}$	6	304	Fontbonne \& Gilles (1969)
$\delta \cdot \mathrm{TaN}$	12	3.07	Gatterer, Dufek. Ettmayer \& Kieffer (1975)
NaTaN_{2}	6	$3 \cdot 13$	Jacobs \& Pinkowski (1989)
TaON	2	3.23	Armytage \& Fender (1974)
RbTaO,	3	$3 \cdot 24$	Serafin \& Hoppe (1980)
Tal,	2	3.31	Müller (1979)
TaTe_{2}	4	3.32	Brown (1966)
$\alpha-\mathrm{TaS}_{2}$	6	3.35	Jellinek (1962)
TaBO_{4}	4	3.40	Zaslavskij \& Zvincuk (1953)
$\mathrm{Ta}, \mathrm{N}_{3}$	1	3.00	This study

Bond-valence parameters appropriate for metalmetal bonding have recently been derived (O'Keeffe \& Brese, 1991). These predict the length of a $\mathrm{Ta}-\mathrm{Ta}$ single bond to be $R=2.78 \AA$ and using the expression (Brown \& Altermatt, 1985) for the valence v of a bond of length $d: v=\exp [(R-d) / 0.37 \AA]$, the short bond in $\mathrm{Ta}_{3} \mathrm{~N}_{5}$ corresponds to a valence of 0.55 . Note, however, that in a material such as MgO (where the $\mathrm{Mg} \cdots \mathrm{Mg}$ distance is shorter than in elemental Mg), each of the twelve closest 'bonds' is calculated to have a valence of 0.3 , although it is generally accepted that there is no metal-metal bonding in this case.

Electrostatic potentials (φ) reported in Table 1 are calculated assuming integral non-overlapping spherical charges (Tosi, 1964). Since the potentials at both Ta sites are similar, both metal atoms are equivalently surrounded by opposite charges. Therefore, based on bond valence as well as Madelung potential calculations, we believe the close $\mathrm{Ta} \cdots \mathrm{Ta}$ distance is more a constraint of the pseudobrookite structure than a result of metal-metal bonding.

This material is based upon work supported under a US National Science Foundation Graduate Fellowship to NEB and is part of a continuing program in crystal chemistry supported by the NSF (DMR 8813524). We have benefited from the use of facilities at the Manuel Lujan, Jr Neutron Scattering Center, a national user facility, funded as such, by the DOE/Office of Basic Energy Sciences. The synthesis work at Cornell is supported by the Office of Naval Research.

References

Armytage, D. \& Fender, B. E. F. (1974). Acta Cryst. B30, 809-812.
Åsbrink, S. \& Magnéli, A. (1959). Acta Cryst. 12, 575-581.
Badding, M. E. \& DiSalvo, F. J. (1990). Inorg. Chem. 29, 3952-3954.
Brauer, G. \& Mohr-Rosenbaum, E. (1971). Monatsh. Chem. 102, 1311-1316.
Brauer, G. \& Weidlein, J. R. (1965). Angew. Chem. Int. Ed. Engl. 4, 241-242.
Brauer, G., Weidlein, J. \& Strähle, J. (1966). Z. Anorg. Allg. Chem. 348, 298-308.
Brauer, G. \& Zapp, K. H. (1953). Naturwissenschaften, 40, 604.
Brauer, G. \& Zapp, K. H. (1954). Z. Anorg. Allg. Chem. 277, 129-139.
Brown, B. E. (1966). Acta Cryst. 20, 264-267.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Christensen, A. N. \& Lebech, B. (1978). Acta Cryst. B34, 261-263.
Conroy, L. E. \& Christensen, A. N. (1977). J. Solid State Chem. 20, 205-207.

Fontbonne, A. \& Gilles, J. (1969). Rev. Int. Hautes Temp. Refract. 6, 181-192.
Gatterer, J., Dufek, G., Ettmayer, P. \& Kieffer, R. (1975). Monatsh. Chem. 106, 1137-1147.
Hewat, A. W. (1979). Acta Cryst. A35, 248.
Jacobs, H. \& Pinkowski, E. V. (1989). J. Less-Common Met. 146, 147-160.
Jellinek, F. (1962). J. Less-Common Met. 4, 9-15.
Larson, A. C. \& Von Dreele, R. B. (1990). Generalized Structure Analysis System (GSAS). LANSCE, MS-H805, Manuel Lujan, Jr Neutron Scattering Center, Los Alamos, NM 87545, USA.
Moureu, H. \& Hamblet, C. H. (1937). J. Am. Chem. Soc. 59, 33-40.
Mueller, M. H. (1977). Scr. Metall. 11, 693.
Müller, U. (1979). Acta Cryst. B35, 2502-2509.
O'Keeffe, M. \& Brese, N. E. (1991). J. Am. Chem. Soc. 113, 3226-3229.
Rauch, P. \& DiSalvo, F. (1991). Inorg. Synth. To be published.
Rouse, K. D., Cooper, M. J. \& Chakera, A. (1970). Acta Cryst. A26, 582-691.
Schönberg, N. (1954a). Acta Chem. Scand. 8, 213-222.
Schönberg, N. (1954b). Acta Chem. Scand. 8, 199-203.
Serafin, M. \& Hoppe, R. (1980). Z. Anorg. Allg. Chem. 464, 240-254.
Strähle, J. (1973). Z. Anorg. Allg. Chem. 402, 47-57.
Terao, N. (1971). Jpn J. Appl. Phys. 10, 248-259.
Terao, N. (1977). C. R. Acad. Sci. Sér. C, 285, 17-20.
Tosi, M. P. (1964). Solid State Phys. 16, 1-120.
Von Dreele, R. B., Jorgensen, J. D. \& Windsor, C. G. (1982). J. Appl. Cryst. 15, 581-589.

Weishaupt, M. \& Strähle, J. (1977). Z. Anorg. Allg. Chem. 429, 261-269.
Zaslavskij, A. I. \& Zvincuk, R. A. (1953). Dokl. Akad. Nauk SSSR, 90, 781-783.

Acta Cryst. (1991). C47, 2294-2297

Structure of $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$

By A. Moqine and Ali Boukhari*
Laboratoire de Chimie du Solide Appliquée, Département de Chimie, Faculté des Sciences, Université Mohammed V, Avenue Ibn Batouta, Rabat, Morocco

and Elizabeth M. Holt*
Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA

(Received 8 June 1990; accepted 11 April 1991)

Abstract

Barium copper pyrophosphate, $M_{r}=374 \cdot 8$, triclinic, $\quad P \overline{1}, \quad a=7.353(2), \quad b=7.578$ (2),$\quad c=$ 5.231 (1) $\AA, \quad \alpha=90.83$ (2),$\quad \beta=95.58$ (2),$\quad \gamma=$ $103.00(2)^{\circ}, \quad V=282.5(1) \AA^{3}, \quad Z=2, \quad D_{x}=$ $4.41 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71069 \AA, \quad \quad \mu=$ $112.5 \mathrm{~cm}^{-1}, F(000)=342, T=298 \mathrm{~K}, R=3.4 \%$ for 1207 observed reflections. The structure of

[^1]$\mathrm{BaCuP}_{2} \mathrm{O}_{7}$ is isostructural with that of $\mathrm{BaCoP}_{2} \mathrm{O}_{7}$. Both show planes of $\left[\left(M \mathrm{P}_{2} \mathrm{O}_{7}^{2-}\right)_{2}\right]_{\infty}, M=\mathrm{Cu}, \mathrm{Co}$, composed of mixed $M \mathrm{O}_{5}$ and PO_{4} polyhedra and square-pyramidal coordination for M, linked together by interplanar Ba atoms.

Introduction. Two types of structures are found for solid-state diphosphates, $A_{2} \mathrm{P}_{2} \mathrm{O}_{7} \quad(A=$ bivalent cation): thortveitite and dichromate (Cruickshank,

[^0]: * Lists of the observed diffraction profiles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54220 (127 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

[^1]: * Authors to whom correspondence should be addressed.

